
Junior Journal

Journal Name

LinkJVM 2.0 - Java on the KIPR Link
Regular Paper

Markus Klein1, ? and Christoph Hackenberger1

1Vienna Institute of Technology (TGM)
? Corresponding author E-mail: m@mklein.co.at

Received D M 2014; Accepted D M 2014

DOI: 10.5772/chapter.doi

© 2014 Markus Klein; licensee Junior Journal. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Abstract One major part of any robot is its software. The
software brings the robot to life. So it is really important
that the software is powerful but at the same time it should
be maintainable as easy as possible, especially when the
program is written by a team.

Java is an object oriented programming language, which is
not that hard to learn. Unfortunately the KIPR Link does
not support Java out of the box.

LinkJVM provides an open source full Java Runtime
Environment(JRE) as well as an object oriented and easy
to use library for controlling the robot.

The following paper shows a high and low level based
implementation of a Java library for controlling the
robot. This is archieved by wrapping the native libkovan.
LinkJVM is also integrated into the KIPR Link’s build
system which allows easy and user-friendly deployment.
Further this papers describes how to write programs in
Java with the LinkJVM and how to get them running on
the KIPR Link.

Keywords Java, JVM, Botball, Library, Framework,
Wrapper, KIPR Link, Libkovan, Robotic, JNI, SWIG,
JamVM, GNU Classpath, Open Source

1. Introduction

The purpose of Botball[1] is to motivate students for
building and programming autonomous robots. Most
new students to Botball do not have any experience with
programming. Therefore the way of developing the robot
software has to be very beginner friendly and easy to use,

but especially in Austia where most botball students come
from technical schools there is also a need for high level
languages.

So what is the best language for Botball? The authors do
not think there is a best choice. Every language has its own
advantages and disadvantages. C for example is a very
powerful fast and processor-near language so it is quite
good for a robot controller doing a lot of basic things such
as controlling servos and motors, reading sensor values
and so on. This is good for students without programming
experience which only implement simple algorithms, but
for more experienced students with more complex code C
is not the right choice. While libkovan mostly avoids the
real challenges in coding C, when implementing complex
algorithms there is no way around pointers and memory
management.

Another well-known possibility is Java[2]. It is much
easier to learn and also pretty powerful and reliable.
Of course it is not as fast as compiled languages such
as C or C++, but in the most cases it will make no
real difference. Java is a higher level language than C
which makes it in general easier to implement complex
algorithms. It provides automatic garbage collection to
handle memory management and offers an excellent set
of basic data structures such as lists, queues and maps
as well as a huge standard library including easy to use
APIs for network programming, multithreading and much
more. In C everything has to be built from scratch. The
object-oriented paradigm is also very helpful to structure
the program to improve the maintainability, especially in
bigger projects. Moreover Java is compiled into cross

www.juniorjournal.org Short Journal Name, 2014, Vol. No, No:2014 1

http://creativecommons.org/licenses/by/3.0


Figure 1. Object-Diagram showing a typical structure of a LinkJVM application

platform bytecode instead of target specific machine code,
so Java programs do not need to be compile directly on the
Kiss Institute of Practical Robotics[3] (KIPR) Link[4].

In most schools in Austria students get started with
programming using Java and not C or C++. Therefore
the authors would consider themselves as a good Java
programmer, but they never wrote a bigger project using
C nor C++.

Further alternatives are event-based frameworks using
a scripting language such as node.js[5] or in general
scripting languages, but these can be implemented very
easily, because the Java Virtual Machine JVM[6](JVM)
supports a huge amount of additional languages including
javascript, scala and clojure.

2. State of the Art

LinkJVM 1.0[7] was published at the Global Conference on
Educational Robotics 2013[8] (GCER 2013). While the Java
environment JamVM[9] and GNU Classpath[10] works
pretty well the robot library is not that good. At that
time LinkJVM 1.0 wraps over libkovan’s[11] C bindings
which makes the libary structure pretty poor, because
LinkJVM 1.0 first calls the native C function and then the
native C function manages the C++ objects. Though this
approach is easier to implement, but it also comes with
some downsides. The most important of them is that
there is no possibility to write a thread safe library using
this approach, because libkovan itself is not thread-safe.
Moreover LinkJVM 1.0 offers only a very small API with
much less features that libkovan does and LinkJVM’s 1.0
vision system contains also just one camera class. Therefor
the authors decided to write a new library from scratch,
which will fix all this issues.

3. Design Approach

The framework of the LinkJVM consists of one high and
one low level part. The low level part of the LinkJVM
wraps the existing C++ library of libkovan, the high level
now wraps the low level part and represents the API for
the user. So the user only uses the high level part of the

LinkJVM and should not come in contact with any low
level things.

Figure 2. Class-Diagram showing the releationships or the
different high and low level components

For example the user has a digital sensor like a lever on
his robot and now wants to use this sensor in his program.
He will now create a new high level DigitalSensor object,
which only uses one low level DigitalSensor object in
the background (see Figure 2) that again uses the C++
implementation of a DigitalSensor.

The user can create as many high level objects of the same
sensor, motor, servo,... , which will all uses the same low
level object with the specified unique identifier, which is
for example the port of a sensor. If the user creates a new
high level object with a unique identifier that is unequal to
an existing low level object the appropriate factory would
create a new low level object with the specified unique
identifier. (see figure 1)

2 Short Journal Name, 2014, Vol. No, No:2014 www.juniorjournal.org



Both the low and the high level parts are described in detail
in the following subsections:

3.1. Low Level

The low level part of the framework contains the Java
side libkovan wrapper. Every object of a low level
class contains also a native C++ object. This classes
must be instantiated using the corresponding multiton
factory, which means that every low object has a unique
identifier as described in section Design Approach. The
low level part also provides the JNIController class
which holds a singleton of every factory as well as one
static singleton object of itself. Most low level parts
are automatically generated wrapper classes using the
Simplified Wrapper and Interface Generator(SWIG[12]).
This software generates the Java and the C++ wrapper out
of an interface file with all class definition that should be
wrapped.

3.2. High Level

The high level part contains, as already mentioned before,
the object oriented API for the user. Internally every time
the user creates a new high level object, the high level
object requests a new low object. (See figure 2 and figure
1).

4. LinkJVM - API

The API of LinkJVM (or the robot library) provides a
object oriented, well documented and easy to use and
maintainable library for controlling the KIPR Link and all
its connected devices. The API contains classes for the
following components:

• iRobot Create[13]

• motors and servos

• analog and digital sensors

• hardware and software buttons

• vision system

• depth camera (experimental)

• AR.Drone 1.0/2.0[14]

The most important components of the framework are
described in detail in the following subsections.

4.1. Botball Class

The Botball Class contains some basically static methods
like shutDownIn, waitForLight or msleep. The next listing
shows the usage of these methods:

Listing 1. Usage of the Botball class

1 //Terminates the program in 120 seconds
2 Botball.shutDownIn(120);
3 //Wait for the start light on sensor port 0
4 Botball.waitForLight(0);
5 //Sleep for 100 ms
6 Botball.msleep(100);

4.2. Motors/Servos and Sensors

LinkJVM’s robot libary provides classes for the different
types or motors, servos and sensors. The following listing
shows the usage of motors and sensors:

Listing 2. Basic usage of sensors and motors

1 public static void main(String[] args){
2 Motor leftMotor = new Motor(0);
3 Motor rightMotor = new Motor(1);
4 DigitalSensor bumpSensor =
5 new DigitalSensor(0);
6 leftMotor.turn(100);
7 rightMotor.turn(100);
8 while(!bumpSensor.getValue()){
9 Botball.msleep(100);

10 }
11 leftMotor.freeze();
12 rightMotor.freeze();
13 }

The example above shows a very simple program, which
lets the robot drive forward until a digital sensor which is
used as bump sensor bumps.

4.3. Create

The iRobot Createis a very good example to show the
advantage of the usage of an object oriented programming
language like Java. The following example shows the
usage of the iRobot Create:

Listing 3. Usage of the iRobot Create with LinkJVM

1 public static void main(String[] args) {
2 Create create = new Create();
3 create.connect();
4 SideButton sb = new SideButton();
5 BButton bb = new BButton();
6 bb.setText("Start");
7 while(!bb.getValue());
8 while(!sb.getValue()) {
9 if(create.getLeftBump())

10 create.spinClockwise(250);
11 else if(create.getRightBump())
12 create.spinCounterClockwise(250);
13 else
14 create.driveStraigth(400);
15 Botball.msleep(50);
16 }
17 create.stop();
18 create.disconnect();
19 }

With this code it is possible to do a room tour with the
iRobot Create. After the start button was pressed the
Create starts moving until it bumps, then it turns and
moves on in another direction. The program runs until the
side button on the KIPR Link is pressed.

4.4. Vision System

The LinkJVM’s vision system consists basically of 3 major
classes(see figure 3):

www.juniorjournal.org Markus Klein, Christoph Hackenberger:
LinkJVM 2.0 - Java on the KIPR Link

3



• ImageProcessor: The ImageProcessor processes the
image to color or QR blobs with a given CameraConfig
and a given channel number and proviedes afterwards
the CameraObjects.

• CameraObject: One CameraObject represents an object
tracked by an image processor. It contains information
like the bounding box or the center point about the
blob.

• CameraConfig: An CameraConfig object contains
several configuration attributes for an ImageProcessor.

Figure 3. Overview over LinkJVM’s Vision System

Listing 4. Basic usage of the vision system

1 public static void main(String[] args) {
2 Create create = new Create();
3 create.connect();
4 ImageProcessor camera =
5 new ImageProcessor(new CameraConfig
6 (Resolution.MED_RES), 0);
7 camera.openCamera();
8 SideButton sb = new SideButton();
9 while(!sb.getValue()) {

10 camera.update();
11 if(camera.getObjectCount() > 0) {
12 Rectangle rec =
13 camera.getBoundingBox(0);
14 if(rec.getWidth() > 80){
15 if(rec.getCenter().getX() < 290){
16 create.driveDirect(100, 0);
17 }else
18 if(rec.getCenter().getX() > 350){
19 create.driveDirect(100, 0);
20 }
21 Botball.msleep(500);
22 }
23 }
24 create.stop();
25 }
26 create.disconnect();
27 camera.close();
28 }

4.5. Debugger

The LinkJVM-Debugger allows the user to send debug
message over the network to a debugger client. Therefore
the API provides a debugger class which connects
establishes a connection to a client.

Listing 5. Example usage of the LinkJVM-Debugger

1 public static void main(String[] args){
2 Debugger debugger = new Debugger(IP);
3 debugger.write("Some text!");
4 debugger.writeln("Some line!");
5 debugger.close();
6 }

5. Java Environment

LinkJVM includes a Java Runtime Environment[15] (JRE)
which consists of a lightweight Java Virtual Machine(JVM)
and GNU Classpath an open source implementation of
the Java core classes. So LinkJVM 2.0 uses basically the
same Java environment than LinkJVM 1.0 does, but in
addition LinkJVM 2.0 offers the »Eclipse Java compiler«as
Java compiler (javac) and the »jar«for packaging multiple
class files. Using these tools Java programs can be directly
compiled and packaged on the KIPR Link, but since class
and jar files contain cross platform bytecode, it is not
necessary to compile the programs on the KIPR Link. (See
section Developing Tools)

6. Integration into KIPR Link’s build system

The KIPR Link is based on a build framework called
OpenEmbedded [16] and its accociated build system
»bitbake«which provides a cross compile environment
for embedded Linux[17]. Unfortunately the KIPR Link
does not work with the latest version of these tools,
so building the firmware or adding packages is very
hard. Furthermore OpenEmbedded only works on Linux
machines and also requires knowledge of basic and
moderately complex terminal commands. Fortunately
with the excellent help of KIPR staff, the authors managed
to set up a build server and compile a LinkJVM package.

6.1. LinkJVM’s build system

As already mentioned before LinkJVM’s source consists of
a C++ and a Java part. To combine both build processes
using only one build system the authors decided to use
CMake[18] for compilation. CMake is an open source,
cross platform build system which supports C++ as well
as Java and automatically generates makefiles.

For integration into KIPR Link’s build system the authors
added an meta-layer which provides a bitbake recipes for
building LinkJVM.

6.1.1. Deployment

Using bitbake LinkJVM is compiled and packaged into a
ipk software package which can be easily installed on the
Link directly via BotUI.

4 Short Journal Name, 2014, Vol. No, No:2014 www.juniorjournal.org



It is also possible to directly add LinkJVM to a firmware
image and in the future LinkJVM may also be integrated
into the offical Link firmware.

7. Developing Tools

Because the code the user writes with the LinkJVM library
uses the programming language Java, it is not possible to
use the KISS IDE from KIPR because it only supports C or
C++ code.

The authors decided to leave the choice of how to write
the code at the user. It is possible to write the code with an
IDE like Eclipse or Netbeans or just write it in a simple text
editor and compile the source code over the console.

Figure 4. LinkJVM-Uploader

At the beginning it was only possible to upload/run the
user’s program via scp/ssh to/on the KIPR[3] Link[4].
Running a program over ssh is not tournament-conformal,
so the only thing that could be done was to write a C
wrapper, which executes your Java program.

So the next logical thing the authors have to think about
is how to get the compiled program on the KIPR Link and
make it run able there in a for the user easy way? They
first thought about a plugin for the Eclipse IDE but this
would extremely limit the user of how to write the code,
which like already mentioned the authors wanted to leave
the choice at the user. The authors decided to write an
independent program, which is called LinkJVM-Uploader
or JARtoLinkUploader (see Figure 4), to upload .jar files
to the Link. This program also automatically creates C
wrappers, which executes the .jar files and which are
shown in the menu point »Programs«on the KIPR Link.
All this is done over ssh and scp connections in the
background.

8. Conclusion

LinkJVM 2.0 comes with a completely new robot library
which fixes many problems of LinkJVM 1.0[7]. Now the
user does not have care of the thread safety and the vision
system provides an excellent API for using the KIPR[3]
Link’s[4] camera. Since LinkJVM has also been integrated
into the KIPR Link’s build it is incredibly easy to install
and upgrade which makes it pretty attractive for Botball
students. Although the design approach shown in this

paper works very good, it is still not perfect, especially
because developing on the core of LinkJVM requires
advanced knowledge of the Java Native Interface(JNI),
which makes it pretty hard for students to fix bugs on their
own. Moreover since there are very few people with a
build server compiling LinkJVM is nearly impossible.

So the next logical step would be to make LinkJVM’s robot
library a pure Java library and replace the low level part
with real implementation. This could be archieved pretty
easy, because the most parts of libkovan does nothing
else than communicates with the kovan kmod via UDP.
The kovan kmod is a kernel module which provides an
interface to KIPR Link’s Field Programable Gate Array
(FPGA). Using this approach, LinkJVM could also be built
without an build server, because it would only consist
cross platform bytecode.

9. References

[1] Botball, Standards-Based Educational Robotics
Program, http://www.botball.org, 2014

[2] Java, Oracle, http://www.java.com/en/, March
2014

[3] KISS Institute for Practical Robotics, http://www.
kipr.org, 2014

[4] Link, Robot Controler, http://www.kipr.org/
products/link, March 2014

[5] Node Javascript, http://nodejs.org/, March 2014
[6] JVM, Java Virtual Machine, http://en.wikipedia.

org/wiki/Java_virtual_machine/, March 2014
[7] Klein Markus: »Java on the KIPR Link«,

http://files.kipr.org/gcer/2013/proceedings/
Klein_Java_KIPR_Link.pdf, 2013

[8] GCER, Global Conference on Educational Robotics,
http://www.kipr.org/gcer, 2014

[9] JamVM, http://jamvm.sourceforge.net/, 2010.
[10] GNU Classpath, open source Java core class

implementation, http://www.gnu.org/software/
classpath/, March 2014

[11] McDorman B.: libkovan C standard library, https:
//github.com/kipr/libkovan, March 2014

[12] SWIG, Simplified Wrapper and Interface Generator,
http://www.swig.org, March 2014

[13] iRobot Create, Programable Robot, http://www.
irobot.com/us/learn/Educators/Create.aspx,
March 2014

[14] AR.Drone, Parrot, http://ardrone2.parrot.com,
March 2014

[15] JRE, Java Runtime Environment, http:
//www.oracle.com/technetwork/java/javase/
downloads/, March 2014

[16] OpenEmbedded, build framework for embedded
Linux, http://www.openembedded.org/wiki/
Main_Page, March 2014

[17] Braden McDorman, Joshua Southerland: »A Look
Inside the KIPR Link«, http://files.kipr.org/gcer/
2013/proceedings/McDorman_A_Look_Inside_
the_KIPR_Link.pdf, 2013

[18] Cross Make, cross-platform, open-source build
system, http://cmake.org/

www.juniorjournal.org Markus Klein, Christoph Hackenberger:
LinkJVM 2.0 - Java on the KIPR Link

5

http://www.botball.org
http://www.java.com/en/
http://www.kipr.org
http://www.kipr.org
http://www.kipr.org/products/link
http://www.kipr.org/products/link
http://nodejs.org/
http://en.wikipedia.org/wiki/Java_virtual_machine/
http://en.wikipedia.org/wiki/Java_virtual_machine/
http://files.kipr.org/gcer/2013/proceedings/Klein_Java_KIPR_Link.pdf
http://files.kipr.org/gcer/2013/proceedings/Klein_Java_KIPR_Link.pdf
http://www.kipr.org/gcer
http://jamvm.sourceforge.net/
http://www.gnu.org/software/classpath/
http://www.gnu.org/software/classpath/
https://github.com/kipr/libkovan
https://github.com/kipr/libkovan
http://www.swig.org
http://www.irobot.com/us/learn/Educators/Create.aspx
http://www.irobot.com/us/learn/Educators/Create.aspx
http://ardrone2.parrot.com
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.openembedded.org/wiki/Main_Page
http://www.openembedded.org/wiki/Main_Page
http://files.kipr.org/gcer/2013/proceedings/McDorman_A_Look_Inside_the_KIPR_Link.pdf
http://files.kipr.org/gcer/2013/proceedings/McDorman_A_Look_Inside_the_KIPR_Link.pdf
http://files.kipr.org/gcer/2013/proceedings/McDorman_A_Look_Inside_the_KIPR_Link.pdf
http://cmake.org/

	Introduction
	State of the Art
	Design Approach
	Low Level
	High Level

	LinkJVM - API
	Botball Class
	Motors/Servos and Sensors
	Create
	Vision System
	Debugger

	Java Environment
	Integration into KIPR Link's build system
	LinkJVM's build system
	Deployment


	Developing Tools
	Conclusion
	References

